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Pseudotwistors1

Julian Ławrynowicz2 and Osamu Suzuki3

Received February 15, 2000; revised July 5, 2000

We deal with the Hermitian Hurwitz pairs of signature (s, s), s 1 s 5 5 1 4m,
.s 1 1 2 s. 5 2 1 4m;m, m 5 0, 1, . . . . We introduce the Hurwitz twistors
for signature (3, 2) and its dual (1, 4) and we indicate the relationship between
Hurwitz and Penrose twistors. The signatures (1, 8) and (7, 6) give rise to
pseudotwistors and bitwistors, respectively. For pseudotwistors, we prove a
counterpart of the Penrose theorem in the local version, on real analytic solutions
of the related spinor equations versus harmonic forms, and in the semiglobal
version, on holomorphic solutions of those equations versus Dolbeault
cohomology groups. We prove an atomization theorem: There exist complex
structures on isometric embeddings for the Hermitian Hurwitz pairs so that the
embeddings are real parts of holomorphic mappings.

1. INTRODUCTION

Penrose (1977) observed that the points of the Minkowski space-time
can be represented by two-dimensional linear subspaces of a four-dimensional
C-space with a Hermitian form of signature (1122). He called this a
flat twistor space, and the deformation of complex structures yielded the
twistor program.

Ławrynowicz and Rembieliński (1985, 1986a, b, 1987) initiated a
geometrization of the Hurwitz problem of the composition of quadratic forms
and a geometrical study of the related differential operators of the Cauchy–
Riemann, Dirac, and Fueter types by introducing the Hurwitz pairs, also in
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the hyperbolic case discussed by Penrose (1977) and Wells (1982). Ławry-
nowicz and Suzuki (1998) proved counterparts of two Penrose theorems
within the Hurwitz pairs.

Let Cn (k) be an n-dimensional C-space with Hermitian metric of signa-
ture (r, r), r 1 r 5 n,

k [ Ir,r :5 1Ir 0
0 2Ir2, f, g P Cn, ^^ f, g&&k :5 f*kg

Let Rp (h) be a p-dimensional R-space with the symmetric metric of signature
(s, s), s 1 s 5 p:

h [ Is,s :5 1Is 0
0 2Is2, a, b P Rp, ^a, b&h :5 aThb

Definition 1.1 (Hermitian Hurwitz pair). Let H [ (Cn(k), Rp(h)) with
s Þ 0. For s 5 0 the situation is different and easier. If there exists a mapping
+: Rp(h) ^R Cn(k) → Cn(k) such that, for f P Cn(k) and a P Rp(h), we
have ^a, a&h^^ f, f &&k 5 ^^a + f, a + f &&k and, moreover, H is irreducible, i.e.,
there exists no subspace {0} ,

Þ
V ,

Þ
Cn such that im(+.Rp(h) ^ V ) , V, then

H is called a Hermitian Hurwitz pair.

Definition 1.2 (Hurwitz algebra). A central Clifford algebra of order
(s 2 1, s), s 1 s 5 p, which admits a representation (S1, . . . , Sp) with the
condition S#

a [ kS*ak21 5 Sa, a Þ t, t fixed, is called a Hurwitz algebra and
denoted by *s21,s.

Hurwitz algebra defines in Rp(k) differential operators of the Dirac–
Fueter type,

Dd
s,s C 5 0, Dd

s,s :5 o
aÞt

iSa a 1 dIn t, d 5 1 or 0 (1)

The name generalized Fueter equation is used for d 5 1 and generalized
Dirac equation for d 5 0. Let SF

s21,s (H ) and SD
s21,s (H ) denote the linear

space of solutions of Eq. (1) in an open set U for d 5 1 and d 5 0, respectively.
In the sequel, {ea} denotes the basis of Rk1l(Ik,l), {ej} denotes the basis

of Cp1q(Ip,q), and

+: Rk1l (Ik,l) ^R Cp1q(Ip,q) → Cp1q(Ip,q)

ea + ek 5 o
j51, . . . ,p1q

Cj
akej , Ca [ (Cj

ak), C#
a [ kC*a k21

Ca + Cb 1 Cb + Ca 5 ha,b

We define a matrix C-algebra !k,l [ gen {C#
a Cb: a # b} , End Cp1q.

Every x P !k,l can be written uniquely as
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x 5 o
k1121

k50
xk , xk 5 o

a1,b1,???,ak,bk

ja1b1???akbk C #
a1 Cb1 . . . C #

ak Cbk

with x0 5 j0Ip1q and im x :5 x 2 x0

Definition 1.3 (Hurwitz twistor; Ławrynowicz and Suzuki, 1998a). An
element x P !2,3 , End C212 is called a Hurwitz twistor whenever

x 5 o
a,b

jab C #
a Cb and im x2 5 0 (2)

P1 5 (H :5 {x 5 o
a,b

jab C #
a Cb: im x2 5 0} (3)

Theorems A and B below motivate the name ‘Hurwitz twistor’.

Lemma A. The expression (2) is an element of (H 5 P1 if and only if
the following (5

4) equations hold:

j12j45 2 j14j25 1 j15j24 5 0

j12j34 2 j13j24 1 j14j23 5 0

j13j45 2 j14j35 1 j15j34 5 0

j12j35 2 j13j25 1 j15j23 5 0

j23j45 2 j24j35 1 j25j34 5 0

Proof. The calculation of im x2 5 0. n

Lemma B. (H 5 P1 admits the structure of a flag manifold:

(H 5 5(L1
1, L1

2):
L1

1, L1
2 are linear subspaces of C4

L1
1 , L1

2, dim L1
1 5 1, dim L1

2 5 26
Hence (H becomes a complex manifold. Put

31
H :5 {L1

1 , C4, linear subspace, dim L1
1 5 1} . P3(C)

81
H :5 {L1

2 , C4, linear subspace, dim L1
2 5 2} . G(2, 4)

Then we have the following Penrose–Hurwitz correspondence:

(H
m1" 'n1

31
H 81

H

Let p1: S2 → 81
H be the universal vector bundle of 81

H, p̂1: det
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S2 → 81
H be its determinant line bundle, and let S(n

2 denote the nth symmetric
tensor product of S2. Let M(j) form the canonical coordinate covering of
81

H, constructed in Ławrynowicz and Suzuki (1998a, formula (19)). We use
the van der Waerden spinor notation ¹ (Ławrynowicz and Suzuki, 1998a,
formula (27)). A section F1 on an open set U1 of 81

H of the vector bundle
S(n

2 ^ det S2,

F1 5 {FȦḂ. . .Ḋ} P G(U1, S(n
2 ^ det S2)

is called a spinor function of spin 1–2 n whenever the following spinor equations
of spin 1–2 n hold on M (j)

1 ù U1, j 5 1, 2, . . . , 6:

¹AȦF1
AB. . .Ḋ 5 0, where ȦḂ . . . Ḋ contains n items (5)

Theorem A. (Ławrynowicz and Suzuki, 1998a). Hurwitz-twistor counter-
part of Penrose’s (1977) fundamental theorem, local version: Let Z(n)

! (U ) be
the space of real-analytic solutions of the spinor equations (5) of spin 1–2 n on
an open set U , C2. Then they can be written as harmonic forms, i.e., there
exists a one-to-one correspondence between spinor solutions and harmonic
forms with respect to the (1, 1)-metric ds2 :5 dz1 dz1 2 dz2 dz2,

Z(n)
! (U ) . H1 (U, C2n22)

H1 (U, C2n22) :5 {f P G1,0 (U, C2n22): f 5 0 and qf 5 0}

and q is the formally adjoint operator of  with respect to the indefinite fiber
(2, 0)-metric dr2 :5 dz1 dz1 1 dz2 dz2.

Theorem B. (Ławrynowicz and Susuki, 1998a). Hurwitz-twistor counter-
part of Penrose’s (1977) fundamental theorem, semiglobal version: Let
Z(n)

* (U1) be the space of holomorphic solutions of the spinor equations (5)
of spin 1–2 n on an open set U1, whereas m1 and n1 are the related fiber bundles
forming the Penrose-like diagram (4). We put U 81 5 n21

1 (U1) and U 91 5
m1 + n21

1 (U1). Then, if every fiber of m1 is connected, there exists a one-to-
one correspondence

Z(n)
* (U1) . H1(U 91, 2(2n 2 2))

where H1 denotes the one-dimensional Dolbeault cohomology group,
2(2n 2 2) 5 2([e]2n22), and [e] is the canonical effective divisor of P3 (C).

2. PSEUDOTWISTORS FOR HERMITIAN HURWITZ PAIRS

Let +: R9(I8,1 or I4,5) ^R C16 (I8,8) → C16 (I8,8). An element x P !8,1 is
called a pseudotwistor and x P !4,5 is called a pseudobitwistor whenever x
has the form (2) and im x2 5 0. We denote the collection of pseudotwistors
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and pseudobitwistors by 7H 5 P1 and 7H 5 P, respectively; they coincide
and are given by (3).

A relativistic exciton is a relativistic particle in the crystallographic
lattice, situated at (x1, x2, x3), whose previous position in that lattice, now a
hole, was at (x2, y2, z2) (Agranovich, 1968). The space-time elements are

R9(I7,2): 2ds2 5 5
2c2 dt2 1 dx2

1 1 dy2
1 1 dz2

1 1 dx2
2 1 dy2

2 1 dz2
2 2 dt2 1 dX 2

12

H2c2 dt2 1 dx2
1 1 dy2

1 1 dz2
1 1 dx2

2 1 dy2
2 1 dz2

2 2 dt2 1 dX 2
12

1 dX 2
21, dz2 5 dz1 5 dz

R9(I1,8): ds2 5 5
c2 dt2 2 dx2

1 2 dy2
1 2 dz2

1 2 dx2
2 2 dy2

2 2 dz2
2 2 dt2 2 dX 2

12

Hc2 dt2 2 dx2
1 2 dy2

1 2 dz2
1 2 dx2

2 2 dy2
2 2 dz2

2 2 dt2 2 dX2
12

2 dX 2
21, dz2 5 dz1 5 dz

R9(I3,6): ds2 5 5
c2 dt2 2 dx2

1 2 dy2
1 2 dz2

1 2 dx2
2 2 dy2

2 2 dz2
2 1 dt2 1 dX 2

12

Hc2 dt2 2 dx2
1 2 dy2

1 2 dz2
1 2 dx2

2 2 dy2
2 2 dz2

2 2 dt2 1 dX 2
12

1 dX 2
21, dz2 5 dz1 5 dz

R9(I5,4): 2ds2 5 2c2dt2 1 dx2
1 1 dy2

1 1 dz2
1 1 dx2

2 1 dy2
2 1 dz2

2 2 dt2

2dX 2
12 2 dX 2

21, dz2 5 dz1 5 dz

The terms 6dX 2
12 or 2dX 2

12 2 dX 2
21 correspond to interactions. We associate

the pseudotwistors with R9(I1,8) and pseudobitwistors with R9(I5,4). Solutions
obtained for ds2 indicate an interaction between the particle and the hole left
by the particle. The interaction can be characterized in seven different ways
corresponding to different types of fields: a spacelike and timelike field (with
possible stochastic interpretation of dt2), and giving a possibility of classifying
fields from the point of view of their origin, e.g., electromagnetic, with a
possibility of interpretation of their composition, e.g., E 2 1 H2, etc.

Lemma C. (Ławrynowicz and Suzuki, 1998). The expression (2) is an
element of )H 5 P1 or of )H 5 P if and only if the following (9

4) equations hold;

o
a,b,a8,b8

sgnH a b a8 b8
a b a8 b8J jabja8b8 5 0,

a, b, . . . , a8, b8 P {1, 2, . . . , 8}

where sgn{ . . . } denotes the number of transpositions of two numbers of
the sequence (a, b, a8, b8) in order to obtain (a, b, a8, b8).
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Proof :

im x2 5 o
a,b,a8,b8

o
a,b,a8,b8

sgnH a b a8 b8
a b a8 b8J jabja8b8 C#

a Cb Ca8 C#b8 n

Lemma D. )H 5 P1 and )H 5 P admit the structure of a flag manifold:

)H 5 5(L2
1, L2

2):
L2

1, L2
2 are linear subspaces of C8

L2
1 , L2

2, dim L2
1 5 1, dim L2

2 5 26
Hence )H becomes a complex manifold. We have the following
correspondences:

32
H :5 {L2

1 , C8} . P7(C), 82
H :5 {L2

2 , C8} . G(2,8)

P1
m2" 'n2

32
H 82

H

and
P

m2" 'n2

32
H 82

H

(6)

Let p2: S2 → 82
H be the universal vector bundle of 82

H, p̂2: detS2 →
82

H its determinant line bundle, and M( j) form the canonical coordinate cov-
ering of 82

H. Consider a spinor function F2 of spin 1–2 n belonging to G (U2,
S(n

2 ^ det S2), U2 being an open set of 82
H, and the corresponding spinor

equations on M (j)
2 ù U2, j 5 1, 2, . . . , 6,

¹AȦF2
ȦḂ. . .Ḋ 5 0, ȦḂ . . . Ḋ contains n items (7)

Theorem C. (Ławrynowicz and Suzuki, 2000b). Pseudotwistor counter-
part of Penrose’s fundamental theorem, local version: Let Z(n)

! (U ) be the
space of real-analytic solutions of the spinor equations (7) of spin 1–2 n on an
open set U , C4. Then they can be written as harmonic forms, i.e., there
exists a one-to-one correspondence between spinor solutions and harmonic
forms with respect to the metric

(0,4): ds2 :5 2 dz1 dz1 2 dz2 dz2 2 dz3 dz3 2 dz4 dz4 pseudotwistors

(2,2): ds2 :5 dz1 dz1 1 dz2 dz2 2 dz3 dz3 2 dz4 dz4 pseudobitwistors

Z(n)
! (U ) :5 H1 (U, C8n28)

H1 (U, C8n28) :5 {f P G1,0 (U, C8n28): f 5 0 and qf 5 0}
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and q is the formally adjoint operator of  with respect to the indefinite fiber
(8,0)-metric

dr2 :5 dz1 dz1 1 dz2 dz2 1 ??? 1 dz8 dz8

Theorem D. (Ławrynowicz and Suzuki, 2000b). Pseudotwistor counter-
part of Penrose’s fundamental theorem, semiglobal version: Let Z(n)

* (U2) be
the space of holomorphic solutions of the spinor equations (7) of spin 1–2 n on
an open set U2, with m2 and n2 the related fiber bundles forming the Penrose-
like diagrams (6). We put U 82 5 n21

2 (U2) and U 92 5 m2 + n21
2 (U2). Then, if

every fiber of m2 is connoted, there exists a one-to-one correspondence

Z(n)
* (U2) . H1 (U 92, 2(2an 2 b))

where a and b, b $ 2, are some positive integers.

3. COMPLEX STRUCTURES OF SPINORS

For spinor equations, we refer to Lounesto (1997, especially p. viii) and
Ławrynowicz and Suzuki (2000a). We consider complex structures of spinors,
more exactly, to decide whether the following isometric embedding becomes
the part of a holomorphic mapping:

C2 . R4 { x °
i o

3

a51
xa Sa 1 x4I4 P G(2, 4) (8)

C4 . R8 { x °
i o

7

a51
xa Sa 1 x8I8 P G(8, 16) (9)

Lemma 1. The isometric embeddings i of the Hurwitz algebras *4,0,
*2,2, *0,4 admit complex structures. The Weyl equations and the isometric
embedding i are as follows:

*4,0: [is1
1 1 is2

2 1 is3
3 1 I4

4]f+ 5 0, i(u, v) 5 A1 :5 1 u v
2v̄ ū2

u 5 x4 1 ix3, v 5 x2 1 ix1

*2,2: [s1
1 2 s2

2 1 is3
3 1 I4

4]f+ 5 0, i(u, v) 5 A2 :5 1u v
v̄ ū2

u 5 x4 1 ix3, v 5 x1 1 ix2

*0,4: [is1
1 2 s2

2 1 is3
3 1 I2

4]f+ 5 0,

i(u, v) 5 A1, u 5 x4 1 ix3, v 5 x2 1 ix1
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Lemma 2. The isometric embeddings given in Lemma 1 are real parts
of holomorphic mappings.

Proof. Using in Lemma 1 the following notation and the complex
conjugates

T1 5 11 0
0 02, T̄1 5 10 0

0 12, T2 510 1
0 02, T̄2 5 1 0 0

21 02
i(u, v) 5 iH % iH , iH 5 uT1 1 vT2

we can realize the isometric mapping as the real form of a holomorphic
embedding for *2,2. The other cases are similar. n

The purpose of this section is the treatment of *s,s, s 1 s 5 8.

Atomization Theorem. There exist complex structures on isometric
embeddings for Hermitian Hurwitz pairs related to the algebras *0,8, *2,6,
*4,4, *6,2, and *8,0 so that the embeddings are real parts of holomorphic
mappings.

Proof. The proof is given by making the list of complex structures. n

In the sequel,

71 5 1I2 0
0 02, 71 5 10 0

0 I22,

72 5 10 I2

0 02, 72 5 1 0 0
2I2 02

For *0,8, the embedding is (Ławrynowicz and Suzuki, 2000a, Section
2.1.1)

u 5 x3 1 ix8, v 5 x1 1 ix2, w 5 x4 1 ix5, t 5 x6 1 ix7

i(u, v, w, t) 5 1
A3 A5 A7 0
A6 A4 0 A7

A8 0 A4 2A5

0 A8 2A6 A3
2, A3 5 1ū v̄

v 2u2,

A4 5 12u 2v̄
2v ū 2, A5 5 1w 0

0 w2, A6 5 1w̄ 0
0 w̄2,

A7 5 1 t 0
0 t2, A8 5 1 t̄ 0

0 t̄2
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The holomorphic mapping is

iH 5 uT1 1 vT2 1 tT3 1 wT4 (10)

T1 5 diag(2T̄1, 2 T1, 2T1, 2T̄1), T2 5 diag(2T̄2, 2T̄2, 2T̄2, 2T̄2)

T1 5 diag(T1, T̄1, T̄1, T1), T2 5 diag(T2, T2, T2, T2)

T3 5 10 I4

0 02, T4 5 172 0
0 2722,

T3 5 10 0
I4 02, T4 5 1272 0

0 722
and the isometric embedding satisfies the formula

i 5 iH % iH (11)

For *6,2, the embedding is (Ławrynowicz and Suzuki, 2000a, Section 2.2.1)

i(v, w, t, x) 5 1
A9 0 A5 A1

0 2 A10 A11 A6

2A6 A1 2 A10 0
A11 2A5 0 A9

2
u 5 x4 1 ix3, v 5 x2 1 ix1, w 5 x5 1 ix6, t 5 x7 1 ix8

A9 5 1 t 0
0 2t2, A10 5 1 t 0

0 2t2, A11 5 12u v
2v 2u2

The matrices A1, A2, . . . , A11 will be called atoms.
The holomorphic mapping is given by (10), where

T1 5 diag(T1,T1, T1, T1), T2 5 1 0 71

71 0 2
T3 5 diag*(2T1, T1, 2T1, T1), T4 5 diag*(T2, T2, T2, T2)

T1 5 diag(2T1, 2T1, 2T1, 2T1), T2 5 1 0 71

271 0 2
T3 5 diag*(2T1, T1, 2T1, T1), T4 5 diag*(T2, T2, T2, T2)

and the isometric embedding satisfies the formula (11).
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For *2,6, the embedding is (Ławrynowicz and Suzuki, 2000a, Section
2.3.1)

i(v, w, t, x) 5 1
A3 A7 A5 0
A8 A4 0 A5

2A6 0 A3 2A7

0 2A6 2A8 A4
2

u 5 x3 1 ix8, v 5 x1 1 ix2, w 5 x7 1 ix6 t 5 x4 1 ix5

The holomorphic mapping is as given by (10), where

T1 5 diag(2T1, 2T1, 2T1, 2T1), T2 5 diag(2T2, T2, 2T2, T2)

T1 5 diag(2T1, 2T1, 2T1, 2T1), T2 5 diag(T2, 2T1, T2, 2T1)

T3 5 172 0
0 2722, T4 5 10 I4

0 02,

T3 5 1272 0
0 722, T4 5 1 0 0

2I4 02
and the isometric embedding satisfies the formula (11).

For *4,4, the embedding is (Ławrynowicz and Suzuki, 2000a, Section
2.4.1)

i(u, v, w, t) 5 1
A3 0 A5 A7

0 A3 2A8 A6

2A6 A7 A4 0
2A8 2A5 0 A4

2
u 5 x3 1 ix8, v 5 x1 1 ix2, w 5 x6 1 ix7, t 5 x4 1 ix5

The holomorphic mapping is as given by (10), where

T1 5 diag(2T1, 2T1, 2T1, 2T1), T2 5 diag(T2, T2, T2, T2)

T1 5 diag(T1, T1, T1, T1) , T2 5 diag(T2, T2, 2T2, 2T2)

T3 5 1 0 72

72 0 2, T4 5 1 0 71

271 0 2,

T3 5 1 0 272

272 0 2, T4 5 1 0 71

271 0 2
and the isometric embedding satisfies the formula (11).
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