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We deal with the Hermitian Hurwitz pairs of signature (o, s), 0 + s= 5 + 4y,
o+ 1—8s =2+ 4mp, m=0,1,.... Weintroduce the Hurwitz twistors
for signature (3, 2) and its dual (1, 4) and we indicate the relationship between
Hurwitz and Penrose twistors. The signatures (1, 8) and (7, 6) give rise to
pseudotwistors and bitwistors, respectively. For pseudotwistors, we prove a
counterpart of the Penrose theorem in the local version, on real analytic solutions
of the related spinor eguations versus harmonic forms, and in the semiglobal
version, on holomorphic solutions of those equations versus Dolbeault
cohomology groups. We prove an atomization theorem: There exist complex
structures on isometric embeddings for the Hermitian Hurwitz pairs so that the
embeddings are real parts of holomorphic mappings.

1. INTRODUCTION

Penrose (1977) observed that the points of the Minkowski space-time
can be represented by two-dimensional linear subspaces of afour-dimensional
C-space with a Hermitian form of signature (++——). He caled this a
flat twistor space, and the deformation of complex structures yielded the
twistor program.

tawrynowicz and Rembielihski (1985, 1986a, b, 1987) initiated a
geometrization of the Hurwitz problem of the composition of quadratic forms
and a geometrical study of the related differential operators of the Cauchy—
Riemann, Dirac, and Fueter types by introducing the Hurwitz pairs, aso in
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the hyperbolic case discussed by Penrose (1977) and Wells (1982). Lawry-
nowicz and Suzuki (1998) proved counterparts of two Penrose theorems
within the Hurwitz pairs.

Let C" (k) be an n-dimensional C-space with Hermitian metric of signa-
ture (p, r),p + r = n,

Kz|p,,:=<'6’ 0), fgeCn (f g = f*kg

_II‘

Let RP(m) be ap-dimensional R-space with the symmetric metric of signature
(0,9,0 +s=p:

Mm=lesi= (IS _OI ) a,beRP, (ab),:=amb
S

Definition 1.1 (Hermitian Hurwitz pair). Let H = (C"(k), RP(n)) with
s # 0. For s = O the situation is different and easier. If there exists a mapping
o: RP(m) ®r C'(k) —» C"(x) such that, for f € C"(x) and a € RP(n), we
have (a, a),((f, f)). = ((a°f, a f)), and, moreover, H isirreducible, i.e.,
there exists no subspace {0} C V C C" such that im(e|RP(m) ® V) C V, then
H is called a Hermitian Hurwitz pair.

Definition 1.2 (Hurwitz agebra). A central Clifford algebra of order
(0 — 1,8, 0 + s = p, which admits a representation (S, . . ., S,) with the
condition § = kSik ! = S, a # t, t fixed, is called a Hurwitz algebra and
denoted by ¥,_1 .

Hurwitz algebra defines in RP(k) differential operators of the Dirac—
Fueter type,

D3 ¥ =0, Dds:= D iS, 0% + 3, d,, d=1or0 (@)
aFt

The name generalized Fueter equation is used for 8 = 1 and generalized
Dirac equation for 8 = 0. Let §,_15(H) and §_1 5 (H) denote the linear
space of solutions of Eq. (1) inan openset U ford = 1and d = O, respectively.

In the sequel, {€,} denotes the basis of R*"!(l,), {€} denotes the basis
of CP*9(lpq), and

or RK (1)) ®g C* (1,0 — CPH(l, )
o= > Cug, C.=(Cy Ci=xCik™

CaOCB+CBOCa:n0(,B

We define a matrix C-algebra #dy; = gen {C/ Cy: « = B} C End CP*.
Every x e dy, can be written uniquely as
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k+1-1
_ _ # #
X = 2 X X = E Eulﬁl'“ukﬁk Cul CBl te Cak Cﬁk
k=0 a1<P1<---<ak<Pk

with X = &olpsqand imx:= x — Xo

Definition 1.3 (Hurwitz twistor; £awrynowicz and Suzuki, 1998a). An
element x € A3 C End C?*2 is called a Hurwitz twistor whenever

X = E gaB Cﬁ CB and im X2 =0 (2)
a<f
Pl=9y:={x= D &pCliCsimx2=0} (3)
a<fp

Theorems A and B below motivate the name ‘ Hurwitz twistor’.

Lemma A. The expression (2) is an element of $,, = P! if and only if
the following (3) equations hold:

€126a5 — €1a65 + E15€4 = O
€12€as — €1360a + Ea = 0
13645 — €145 + E15E3s = O
E12€ss — €1365 + E15€3 = 0
€364 — E2ass t+ €560 = 0
Proof. The calculation of im x> = 0. m
Lemma B. $,; = P! admits the structure of a flag manifold:
L1, L3 are linear subspaces of C*
Pu =1 (LE, LY):
LIC L dimLi=1,dmL}=2
Hence $,, becomes a complex manifold. Put
P = {L1 C C4 linear subspace, dim L} = 1} = P3(C)
AUY := {L3 C C4 linear subspace, dim L} = 2} = G(2, 4)
Then we have the following Penrose—Hurwitz correspondence:

I
M NV
Pk U

Let m:S. - UL be the universal vector bundle of AUy, 7y det
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S - WU} beitsdeterminant line bundle, and let S" denote the nth symmetric
tensor product of S_. Let M® form the canonical coordinate covering of
A, constructed in awrynowicz and Suzuki (1998a, formula (19)). We use
the van der Waerden spinor notation V (Lawrynowicz and Suzuki, 1998a,
formula (27)). A section ®! on an open set U; of U} of the vector bundle
S Q@ det S,

O = {Dpg p} € ['(Uy, " @ det S.)

iscalled aspinor function of spin$n whenever the following spinor equations
of spininholdonM® NU;,j=1,2,...,6:

VAPl 5 =0, where AB...D containsnitems (5)

TheoremA. (Lawrynowicz and Suzuki, 1998a). Hurwitz-twistor counter-
part of Penrose's (1977) fundamental theorem, local version: Let Z% (U) be
the space of real-analytic solutions of the spinor equations (5) of spin4n on
an open set U C C2 Then they can be written as harmonic forms, i.e., there
exists a one-to-one correspondence between spinor solutions and harmonic
forms with respect to the (1, 1)-metric ds? := dz* dZ* — dZ dZ,

Zg;) (U) = HL (U, CZ”—Z)
HY (U, C*2) := {$ e T'0 (U, C?): ab = 0 and D = O}

and ¥ isthe formally adjoint operator of 9 with respect to the indefinite fiber
(2, 0)-metric dp? := d¢* dZ* + d¢? dz

Theorem B. (Lawrynowicz and Susuki, 1998a). Hurwitz-twistor counter-
part of Penrose’'s (1977) fundamental theorem, semiglobal version: Let
Z® (U,) be the space of holomorphic solutions of the spinor equations (5)
of spin%n on an open set U, whereas ., and v, are the related fiber bundles
forming the Penrose-like diagram (4). We put U; = vi* (U;) and U] =

py e vt (Uy). Then, if every fiber of ., is connected, there exists a one-to-
one correspondence

ZPUy) = HY(U1, O(=n — 2))

where H, denotes the one-dimensional Dolbeault cohomology group,
O(—n — 2) = 0([e] "?), and [€] isthe canonical effective divisor of P2 (C).

2. PSEUDOTWISTORS FOR HERMITIAN HURWITZ PAIRS

Let o: Rg(lg’l or |4’5) ®[R ([:16 (|8,8) — (]::16 (lgyg). An element x e &q‘gyl is
called a pseudotwistor and x e <45 is called a pseudobitwistor whenever x
has the form (2) and im x> = 0. We denote the collection of pseudotwistors
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and pseudobitwistors by I = P, and 7 = P, respectively; they coincide
and are given by (3).

A relativigtic exciton is a relativistic particle in the crystallographic
lattice, situated at (X;, Xo, X3), Whose previous position in that lattice, now a
hole, was at (X,, Y, Z) (Agranovich, 1968). The space-time elements are

—c2dt? + i + dy + dZ + G + dy3 + dB — dv? + dX%,
R(17,): —ds? =4 [—c2dt? + dx¢ + dy? + dZ + dx3 + dy3 + dBZ — dr? + dX3,
+ dX%l, d22 = le =dz

c2di? — d¢ — dyZ2 — dzZ — dx3 — dys — dB — di? — dX%,
Rl €= [2d?— bé— dy? — dB — bd — ch3 — dB — dh? — G,
- dX%l, dz, = dz = dz

d? — dé — dy? — dZ — @ — dy3 — dZ + di? + dXZ
R(15¢): d? = { (2 d2 — b — dyZ — d2 — d@ — dy3 — dB — dr? + dXZ,
+dX3, dz=dz=dz

R(154): —ds? = —c%dt? + dxZ + dyZ + dZ + dx3 + dy3 + dZZ — dr?

—dX%, — dX3, dz, =dz = dz

Theterms +dX%, or —dX%, — dX3%, correspond to interactions. We associate
the pseudotwistors with R%(1, g) and pseudobitwistors with R%(154). Solutions
obtained for ds? indicate an interaction between the particle and the hole left
by the particle. The interaction can be characterized in seven different ways
corresponding to different types of fields: a spacelike and timelike field (with
possible stochasticinterpretation of dr?), and giving apossibility of classifying
fields from the point of view of their origin, e.g., electromagnetic, with a
possibility of interpretation of their composition, e.g., E? + H?, etc.

Lemma C. (Lawrynowicz and Suzuki, 1998). The expression (2) is an
element of $,, = P, or of $,, = Pif and only if thefollowing (3) equationshold;

aba b B
a<B§U<B’ %n{a B o B/} g(ngu’B’ - 0;
ab ..., o, B c{l,2...,8

where sgr{ ...} denotes the number of transpositions of two numbers of
the sequence («, B, a’, B’) in order to obtain (a, b, &', b’).
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Proof:

aba b

imx2 = L,
a<b<a'<b’ a<B<a’<p’ aBa B

} €apbup ChCp Cy Cypr W

Lemma D. $, = P, and $,, = P admit the structure of a flag manifold:

L2, L3 are linear subspaces of C?8

EH = (L%! L%)
L2C L2 dimL2 = 1, dimL3 = 2

Hence $y becomes a complex manifold. We have the following
correspondences:

P2 :={L2C C8 = P/(C), WZ:={L3CC8 =G(28)

M2 N2 and M2 V2 (6)

Let m: S. — UF be the universal vector bundle of UZ, 7, detS. -
AU its determinant line bundle, and M® form the canonical coordinate cov-
ering of AUF. Consider a spinor function ®? of spinin belonging to I" (Uy,
S"® det S_), U, being an open set of U, and the corresponding spinor
equationsonMP NU, j =1,2, ..., 6,

VA2, 5 =0, AB...D containsnitems (7)

Theorem C. (Lawrynowicz and Suzuki, 2000b). Pseudotwistor counter-
part of Penrose's fundamental theorem, local version: Let Z (U) be the
space of real-analytic solutions of the spinor equations (7) of spin4n on an
open set U C C* Then they can be written as harmonic forms, i.e., there
exists a one-to-one correspondence between spinor solutions and harmonic
forms with respect to the metric

(0,9): d? ;= — dZA dZ' — d2 dZ — d2dZ — d¢dZ*  pseudotwistors
(22): df:=dAdP + d2dR — dRAdP® — dA d#  pseudobitwistors
ZH (U) := H' (U, C&9)

H (U, C&8) ;= {b e TO (U, C&"8): 9 = 0 and 9 = 0}
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and v isthe formally adjoint operator of 9 with respect to the indefinite fiber
(8,0)-metric

dp? := dgt dg* + dg? dg? + -+ + dg® dg®

Theorem D. (Lawrynowicz and Suzuki, 2000b). Pseudotwistor counter-
part of Penrose’s fundamental theorem, semiglobal version: Let Zp (U,) be
the space of holomorphic solutions of the spinor equations (7) of spin4n on
an open set U,, with ., and v, the related fiber bundles forming the Penrose-
like diagrams (6). We put U5 = v51 (Uy) and U5 = p, o vt (Uy). Then, if
every fiber of w, is connoted, there exists a one-to-one correspondence

ZR (Uy) = H* (U, O(—an — B))
where o and B, B = 2, are some positive integers.

3. COMPLEX STRUCTURES OF SPINORS

For spinor equations, we refer to Lounesto (1997, especialy p. viii) and
£ awrynowicz and Suzuki (2000a). We consider complex structures of spinors,
more exactly, to decide whether the following isometric embedding becomes
the part of a holomorphic mapping:

3

C?=R*s x> D xS, + X1, € G2, 4 (8)
a=1
7

C*=RE s x> > xS, + g e G(8, 16) 9)
a=1

Lemma 1. The isometric embeddings v of the Hurwitz algebras ¥4,
¥20, Ho4 admit complex structures. The Weyl equations and the isometric
embedding « are as follows:

Hao: [i010% + 10202 + i050% + 1,%f, = 0, (U, V) = A = (_”\7 é)

u=x*+ix3, v=x+ixt

%2’2: [0161 - 0'282 + i0'3(93 + |484]f+ =0, L(U, V) = A2 = (\U7 \Ui>

u=xt+ix3, v=xt+ix
%0’4: [iolal - 0'282 + i0'3(93 + |2(94]f+ = 0,

Wu,v) = A, u=xt+ixd v=x2+ixt
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Lemma 2. The isometric embeddings given in Lemma 1 are rea parts
of holomorphic mappings.

Proof. Using in Lemma 1 the following notation and the complex
conjugates

100 = (00 01 = _(0 0
neloop w2 mele o me(% 9

L(u, V) = ly @ EH! Ly = uTl + VT2

we can realize the isometric mapping as the real form of a holomorphic
embedding for #,,. The other cases are similar. =

The purpose of this section is the treatment of ¥, s, 0 + s = 8.

Atomization Theorem. There exist complex structures on isometric
embeddings for Hermitian Hurwitz pairs related to the algebras #og, #25,
Haa, Heo, and Hgp so that the embeddings are real parts of holomorphic

mappings.
Proof. The proof is given by making the list of complex structures. m

I, 0 _ /0 0
o‘: O‘:

J1 <o o)* J1 (o |2>'
g _ (0 1 {0 o0
2=lo of 2=\, 0

For ¥, the embedding is (Lawrynowicz and Suzuki, 2000a, Section
211
u=x3+ix§, v=x+ ix3 w=x*+ x5, t=x8+ix
Ay A A 0

In the sequel,

<«

uu, v, w, t) = 2 0 :4 _AXE A3=<5 _\TU)
0 A A A

SEE RS

>

|
//
o —~+
—+ O
~
Il
—
O ~
’_"|o
~— —
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The holomorphic mapping is
gy = u—ﬂ—l + V—I]—z + t—[l—3 + W_H_4 (10)

—l]—l = d'ag(_-l_-l’ - Tl! _Tlv _-Fl)’ —l]—z = dlag(_-l_—z' _fz, _-I_-Z’ _-FZ)
Tl = d|ag(Tl, -I_—l, -I_—l, Tl)’ TZ = dlag(T21 TZ! T2! T2)

(0 1, (9, ©
T3‘(0 o>' 1r4—<0 —:72)’
T._(0 0 (=T, 0
:= |1, of “+=l o 7,

and the isometric embedding satisfies the formula

=

L=y Dy (11
For %, the embedding is (Lawrynowicz and Suzuki, 2000a, Section 2.2.1)

Ay 0 As A
0 —Ao An A
v, w t,x) =1 _ As Ay —Ap O

Au A 0 A

u=x*+ixs v =x+ ixt, w = X% + ix5, t=x +ix®

[t 0 _(t 0 (U v
A9 - (0 _f)! AlO - (0 _t>! All - (_\—/ _u>
The matrices A, Ay, ..., Ay will be called atoms.
The holomorphic mapping is given by (10), where
i - = 0o 7
—l]—l = d|ag(T1,T1, Tl! Tl)1 —l]—2 = (7 01>
1
—|]—3 = diag*(_Tll T11 _Tll Tl)’ —[|—4 = diag*(TZl T2’ T2! TZ)

_ _ - - — 0o I,
Ty = diag(—=Ty, =Ty, =Ty, —To), T, = —q 0
1
Tg = diag*(_Tl, Tl, _T]_, T]_), TA = dlag* (T21 TZ’ T—Z! TZ)

and the isometric embedding satisfies the formula (11).
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For .6, the embedding is (Lawrynowicz and Suzuki, 2000a, Section
2.3.1)

Az A; As 0

0
uv, W, t, X) = _AXe ’?)4 Az _A:SAW
0 A A A

u=x3+ixg v=xt+ ix% w=x + ixt t=x*+ix°
The holomorphic mapping is as given by (10), where

T, = diag(—Ty, — Ty, =Ty, —To), T, = diag(—Ty, Tp, =Tz, T)

Tl = dlag(_Tll _T1! _Tl! _Tl)i TZ = dlag(TZ! _Tl’ T2! _Tl)

J 0 0 |
—W3 = ( 02 _9‘2>1 T4 = (0 8):

— (T, 0y - (0 o0
K KRR R C

and the isometric embedding satisfies the formula (11).
For ¥, 4, the embedding is (Lawrynowicz and Suzuki, 20008, Section
2.4.1)

A; 0 A A
0 A —
u, v, w, t) = A Aj A'?S /E\)e

—As A 0 A
u=x3+ixg v=x+ix, w = x® + ix’, t=x*+ix°
The holomorphic mapping is as given by (10), where
Ty =diag(—Ty, =Ty, =Ty, —Ty), Ty = diag(T,, Ta To, To)
T, = diag(Ty, Ty, Ty, Ty) , T, = diag(T,, To, —To, —T))

0O 9 0 J
ne(S 7 n-(S )

_ (0 T - (0 7
ne(3 T (%Y

and the isometric embedding satisfies the formula (11).
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